2/10^(2x)=10

Simple and best practice solution for 2/10^(2x)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/10^(2x)=10 equation:



2/10^(2x)=10
We move all terms to the left:
2/10^(2x)-(10)=0
Domain of the equation: 10^2x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
-10*10^2x+2=0
Wy multiply elements
-100x^2+2=0
a = -100; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-100)·2
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*-100}=\frac{0-20\sqrt{2}}{-200} =-\frac{20\sqrt{2}}{-200} =-\frac{\sqrt{2}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*-100}=\frac{0+20\sqrt{2}}{-200} =\frac{20\sqrt{2}}{-200} =\frac{\sqrt{2}}{-10} $

See similar equations:

| 10x-15=15x+10 | | 4(3×+1)+7-x=2x+3+9x | | 0.1x+15=0.08x+18 | | 0.1x=0.08x+3 | | 72/56=90/x | | (-1a)-1=0.60-1 | | (-1a)-1=0.25-1 | | 48-(3/2)x=0 | | 48-3/2*x=0 | | 3x+7x=90° | | 5z+2=3z-11 | | -5.5+8.5(1+6.5r)=-21.5 | | 5(x-1)(x-7)=0 | | y-3/4=11/3 | | 143+2x=180 | | (x-7)-(2x+9=-13 | | 4a​−6=−30 | | 6(-5+x)=2(3x) | | 20=5-3(4x-5) | | y=−74/−4 | | 5^(2x-1)=8 | | 2/3(c+9)=39 | | y2+12=7y;4-3 | | 16/(5x)=7/8 | | (y-1)²=3 | | (y-1)2=3 | | 8^7x+3=5^2-5x | | -1.32.9-0.6=r | | 9x-14=3x-10 | | 7x+4–12x=8x-9+7x-2 | | 8m-3m+6=-7m+11–4m | | 3x/4+1/2=5/6 |

Equations solver categories